Start Profitable Manufacturing Business With Low Investment

Start Profitable Manufacturing Business With        Low Investment

Not getting job? Don’t be frustrated. Start profitable manufacturing business with low investment, if you can sale your product. There are so many products which can be manufactured at home with very low investment, even without any special machinery. These products can be produced at your home or small rented premises. Some of these products can be produced in household utensils, buckets and small drums etc. These products are always in good demand and give very good returns on capital investment. Any individual can start any of these businesses as tiny or home business. You can also start business as a part time activity as a side income avenue. After initial success you can expand your business at any time to full time business. In this way one can think starting a business with minimum risk.

We have helped and provided consultancy to numerous persons to start such home industries. Many of them are now very successful entrepreneurs. Instead of doing job for others, they are providing jobs to several individuals directly and indirectly. If they can  do so, why can’t you also.

We are giving a list of products that can be manufactured as stated above. Some of these products are consumer products that are consumed in every house as daily needs. Some products are required by commercial establishments like hospitals, hotels, offices, schools, commercial malls etc. Some other products are needed in industries as raw materials or maintenance specialities.

PRODUCTS LIST

Chafing Gel Fuel

Concrete Admixture additives

Copper and Silver Cleaning Powder

Cutting Oils

Dust Suppressants

Glass and Hard Surface Cleaner

Hair Oils

Hand Sanitizer Gel

Inkjet Printing Ink

Laptop Screen Cleaner

Liquid Hand Soap

Liquid Dish Washing Detergent

Liquid Detergents

Paint Remover

Penetrating Lubricants

Pickling Inhibitors

Pine Oils based Cleaners (White Phenyl)

Room Freshener Spray

Toilet Cleaner

Tiles and Ceramic Cleaners

Water Treatment Chemicals

Wool and Silk Washing Liquid Detergent

Phthalic anhydride and its use: plasticizers, polyester resins, dyes, intermediates

Phthalsäureanhydrid und Seine Verwendung: Weichmacher, Polyesterharzer,  Farbstoffe, Zwischenprodukte (German)

(Phthalic anhydride and its use: plasticizers, polyester resins, dyes, intermediates)

by F. Wirth (Assistant),‎ H. Nohe (Assistant),‎ H. Suter (Author)

Publisher: Dr. Dietrich Steinkopff Verlag, Darmstadt (1 972)

Language: German

Pages: 254

Price: 74,99 €

Phthalsäureanhydrid und Seine Verwendung: Weichmacher, Polyesterharzer, Farbstoffe, Zwischenprodukte

 

 

Unsaturated Polyester Books

Modern Polyesters Chemistry and Technology of Polyesters and Copolyesters

Edited by:  JOHN SCHEIRS and TIMOTHY E. LONG

Publisher:  John Wiley & Sons Ltd, (2003)

pages: 763

ISBN: 0471498564

Language: English

Price: US$ 460

 

Phthalsäureanhydrid und Seine Verwendung: Weichmacher, Polyesterharzer,  Farbstoffe, Zwischenprodukte (German)

 

(Phthalic anhydride and its use: plasticizers, polyester resins, dyes, intermediates)

by F. Wirth (Assistant),‎ H. Nohe (Assistant),‎ H. Suter (Author)

Publisher: Dr. Dietrich Steinkopff Verlag, Darmstadt (1 972)

Language: German

Pages: 254

Price: EUR 195.27

Modern Polyesters Chemistry and Technology

Modern Polyesters Chemistry and Technology of Polyesters and Copolyesters

Edited by:  JOHN SCHEIRS and TIMOTHY E. LONG

Publisher:  John Wiley & Sons Ltd, (2003)

pages: 763

ISBN: 0471498564

Language: English

Price: US$ 460

Contents
Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
Series Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix
About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiii

I HISTORICAL OVERVIEW

1 The Historical Development of Polyesters . . . . . . . . . . 3
J. Eric McIntyre

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Alkyd and Related Resins . . . . . . . . . . . . . . . . . . . 4
3 Fibres from Partially Aromatic Polyesters . . . . . . . . 6
3.1 Early Work Leading to Poly(ethylene Terephthalate) . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Spread of Polyester Fibre Production . . . . . . . 10
3.3 Intermediates . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Continuous Polymerisation . . . . . . . . . . . . . . 13
3.5 Solid-phase Polymerisation . . . . . . . . . . . . . . 13
3.6 End-use Development . . . . . . . . . . . . . . . . . 14
3.7 High-speed Spinning . . . . . . . . . . . . . . . . . . 15
3.8 Ultra-fine Fibres . . . . . . . . . . . . . . . . . . . . . 16
4 Other Uses for Semi-aromatic Polyesters . . . . . . . . . 16
4.1 Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Moulding Products . . . . . . . . . . . . . . . . . . . 17
4.3 Bottles . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5 Liquid-crystalline Polyesters . . . . . . . . . . . . . . . . . 18

6 Polyesters as Components of Elastomers . . . . . . . . . 19
7 Surface-active Agents . . . . . . . . . . . . . . . . . . . . . . 20
8 Absorbable Fibres . . . . . . . . . . . . . . . . . . . . . . . . 21
9 Polycarbonates . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10 Natural Polyesters . . . . . . . . . . . . . . . . . . . . . . . . 23
10.1 Occurrence . . . . . . . . . . . . . . . . . . . . . . . . 23
10.2 Poly(β-hydroxyalkanoate)s . . . . . . . . . . . . . . 23
11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

II POLYMERIZATION AND POLYCONDENSATION

2 Poly(ethylene Terephthalate) Polymerization – Mechanism, Catalysis, Kinetics, Mass Transfer and Reactor Design . . . . . . . . . . . . . . . . . . 31
Thomas Rieckmann and Susanne V¨olker

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2 Chemistry, Reaction Mechanisms, Kinetics and
Catalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1 Esterification/Hydrolysis . . . . . . . . . . . . . . . 41
2.2 Transesterification/Glycolysis . . . . . . . . . . . . 48
2.3 Reactions with Co-monomers . . . . . . . . . . . . 50
2.4 Formation of Short Chain Oligomers . . . . . . . 52
2.5 Formation of Diethylene Glycol and Dioxane . . 54
2.6 Thermal Degradation of Diester Groups and
Formation of Acetaldehyde . . . . . . . . . . . . . 58
2.7 Yellowing . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.8 Chemical Recycling . . . . . . . . . . . . . . . . . . 65
2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 67
3 Phase Equilibria, Molecular Diffusion and Mass Transfer . . . . . . . . . . . . . . . . . . . 72
3.1 Phase Equilibria . . . . . . . . . . . . . . . . . . . . . 72
3.2 Diffusion and Mass Transfer in Melt-phase
Polycondensation . . . . . . . . . . . . . . . . . . . . 75
3.2.1 Mass-transfer Models . . . . . . . . . . . . 78
3.2.2 Diffusion Models . . . . . . . . . . . . . . . 79
3.2.3 Specific Surface Area . . . . . . . . . . . . 83
3.3 Diffusion and Mass Transfer in Solid-state
Polycondensation . . . . . . . . . . . . . . . . . . . . 84
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Polycondensation Processes and Polycondensation

Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.1 Batch Processes . . . . . . . . . . . . . . . . . . . . . 90
4.1.1 Esterification . . . . . . . . . . . . . . . . . . 90
4.1.2 Polycondensation . . . . . . . . . . . . . . . 93
4.2 Continuous Processes . . . . . . . . . . . . . . . . . 93
5 Reactor Design for Continuous Melt-phase Polycondensation . . . . . . . . .. . . .98  5.1 Esterification Reactors . . . . . . . . . . . . . . . . . 99
5.2 Polycondensation Reactors for Low Melt Viscosity . . . . . . . . . . .  . . . . . . . . . . 99
5.3 Polycondensation Reactors for High Melt Viscosity . . . . . . . . . . . . . . . . . . . . 100
6 Future Developments and Scientific Requirements . . . 103
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 104
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3 Synthesis and Polymerization of Cyclic Polyester Oligomers  . . . . . . . . . . . . . 117
Daniel J. Brunelle

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3 Preparation of Polyester Cyclic Oligomers from Acid Chlorides . . . . . . . . . . 120
4 Polyester Cyclic Oligomers via Ring–Chain Equilibration    (Depolymerization)  ……………….. . . 124
5 Mechanism for Formation of Cyclics via Depolymerization . . . . . . . . . . . . . . . 131
6 Polymerization of Oligomeric Ester Cyclics . . . . . . . 134
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4 Continuous Solid-state Polycondensation of Polyesters ………….. 143
Brent Culbert and Andreas Christel

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
2 The Chemical Reactions of PET in the Solid State . . . 147
2.1 Basic Chemistry . . . . . . . . . . . . . . . . . . . . . 147
2.2 Mechanism and Kinetics . . . . . . . . . . . . . . . 151
2.3 Parameters Affecting SSP . . . . . . . . . . . . . . 154
2.3.1 Temperature . . . . . . . . . . . . . . . . . . . 154
2.3.2 Time . . . . . . . . . . . . . . . . . . . . . . . 154
2.3.3 Particle Size . . . . . . . . . . . . . . . . . . 156                                                                                   2.3.4 End Group Concentration . . . . . . . . . . 156
2.3.5 Crystallinity . . . . . . . . . . . . . . . . . . . 157
2.3.6 Gas Type . . . . . . . . . . . . . . . . . . . . 158
2.3.7 Gas Purity . . . . . . . . . . . . . . . . . . . . 158
2.3.8 Catalyst . . . . . . . . . . . . . . . . . . . . . 158
2.3.9 Molecular Weight . . . . . . . . . . . . . . . 158
3 Crystallization of PET . . . . . . . . . . . . . . . . . . . . . 158
3.1 Nucleation and Spherulite Growth . . . . . . . . . 161
3.2 Crystal Annealing . . . . . . . . . . . . . . . . . . . . 164
4 Continuous Solid-state Polycondensation Processing . . 166
4.1 PET-SSP for Bottle Grade . . . . . . . . . . . . . . 166
4.2 Buhler PET-SSP Bottle-grade Process . . . . . . 167
4.2.1 Crystallization (Primary) . . . . . . . . . . 168
4.2.2 Annealing (Secondary Crystallization) . . 168
4.2.3 SSP Reaction . . . . . . . . . . . . . . . . . . 171
4.2.4 Cooling . . . . . . . . . . . . . . . . . . . . . . 172
4.2.5 Nitrogen Cleaning Loop . . . . . . . . . . . 173
4.3 Process Comparison . . . . . . . . . . . . . . . . . . 173
4.4 PET-SSP for Tyre Cord . . . . . . . . . . . . . . . . 175
4.5 Other Polyesters . . . . . . . . . . . . . . . . . . . . . 176
4.5.1 SSP of Poly(butylene terephthalate) . . . 176
4.5.2 SSP of Poly(ethylene naphthalate) . . . . 177
5 PET Recycling . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.1 PET Recycling Market . . . . . . . . . . . . . . . . 178
5.2 Material Flow . . . . . . . . . . . . . . . . . . . . . . 179
5.3 Solid-state Polycondensation in PET Recycling 179
5.3.1 PET Bottle Recycling: Flake SSP . . . . 181
5.3.2 PET Bottle Recycling: SSP After
Repelletizing . . . . . . . . . . . . . . . . . . 182
5.3.3 Closed-loop Bottle-to-bottle Recycling . 183
5.3.4 Buhler Bottle-to-bottle Process . . . . . . 184
5.3.5 Food Safety Aspects . . . . . . . . . . . . . 186
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5 Solid-state Polycondensation of Polyester Resins: Fundamentals and IndustriaL PRODUCTION…195          Wolfgang G¨oltner

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
2 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
2.1 Aspects of Molten-state Polycondensation . . . . 197
2.2 Aspects of Solid-state Polycondensation . . . . . 199
2.3 Physical Aspects . . . . . . . . . . . . . . . . . . . . 200                                                                          2.3.1 The Removal of Side Products . . . . . . 200
2.3.2 Temperature . . . . . . . . . . . . . . . . . . . 202
2.3.3 Reactivity . . . . . . . . . . . . . . . . . . . . 205
2.3.4 Diffusivity . . . . . . . . . . . . . . . . . . . . 205
2.3.5 Particle Size . . . . . . . . . . . . . . . . . . 206
2.3.6 Polydispersity . . . . . . . . . . . . . . . . . 210
2.3.7 Crystallinity . . . . . . . . . . . . . . . . . . . 210
2.4 Other Polyesters . . . . . . . . . . . . . . . . . . . . . 213
3 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
3.1 Batch Process . . . . . . . . . . . . . . . . . . . . . . 216
3.2 Continuous Process . . . . . . . . . . . . . . . . . . . 218
3.3 SSP of Small Particles and Powders . . . . . . . . 220
3.4 SSP in the Suspended State . . . . . . . . . . . . . 221
4 Practical Aspects of the Reaction Steps . . . . . . . . . . 221
4.1 Crystallization and Drying . . . . . . . . . . . . . . 221
4.2 Solid-state Polycondensation . . . . . . . . . . . . . 224
4.2.1 Discontinuous Process . . . . . . . . . . . . 224
4.2.2 Continuous Process . . . . . . . . . . . . . . 226
4.3 Process Parameters Influencing SSP . . . . . . . . 227
4.3.1 Particle Size . . . . . . . . . . . . . . . . . . 227
4.3.2 Catalysts . . . . . . . . . . . . . . . . . . . . . 228
4.3.3 Intrinsic Viscosity . . . . . . . . . . . . . . . 229
4.3.4 Carboxylic End Groups . . . . . . . . . . . 230
4.3.5 Temperature . . . . . . . . . . . . . . . . . . . 233
4.3.6 Vacuum and Gas Transport . . . . . . . . . 234
4.3.7 Reaction Time . . . . . . . . . . . . . . . . . 235
4.3.8 Oligomers and Acetaldehyde . . . . . . . . 235
5 Economic Considerations . . . . . . . . . . . . . . . . . . . 236
6 Solid-state Polycondensation of Other Polyesters . . . . 237
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

III TYPES OF POLYESTERS

6 New Poly(Ethylene Terephthalate) Copolymers . . . . . . 245
David A. Schiraldi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
2 Crystallinity and Crystallization Rate Modification . . . 246
2.1 Amorphous Copolyesters of PET . . . . . . . . . . 247
2.2 Increased Crystallization Rates and Crystallinity in PET Copolymers . . 248   3 PET Copolymers with Increased Modulus and Thermal Properties . .. . . . . 251
3.1 Semicrystalline Materials . . . . . . . . . . . . . . . 251
3.2 Liquid Crystalline Copolyesters of PET . . . . . 254
4 Increased Flexibility Copolymers of PET . . . . . . . . . 254
5 Copolymers as a Scaffold for Additional Chemical Reactions  . . . . . . . . . .  256
6 Other PET Copolymers . . . . . . . . . . . . . . . . . . . . 257
6.1 Textile-related Copolymers . . . . . . . . . . . . . . 257
6.2 Surfaced-modified PET . . . . . . . . . . . . . . . . 260
6.3 Biodegradable PET Copolymers . . . . . . . . . . 260
6.4 Terephthalate Ring Substitutions . . . . . . . . . . 261
6.5 Flame-retardant PET . . . . . . . . . . . . . . . . . . 261
7 Summary and Comments . . . . . . . . . . . . . . . . . . . 261
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

7 Amorphous and Crystalline Polyesters based on 1,4-Cyclohexanedimethanol. …………………….267
S. Richard Turner, Robert W. Seymour and John R. Dombroski

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
2 1,4-Cyclohexanedimethanol . . . . . . . . . . . . . . . . . . 269
3 1,3- and 1,2-Cyclohexanedimethanol: Other CHDM Isomers . . .. . . . . . . . . . . 271
3.1 Definitions: PCT, PCTG, PCTA and PETG . . . 271
4 Synthesis of CHDM-based Polyesters . . . . . . . . . . . 272
5 Poly(1,4-Cyclohexylenedimethylene Terephthalate) . . 273
5.1 Preparation and Properties . . . . . . . . . . . . . . 273
5.2 Other Crystalline Polymers Based on PCT or CHDM . . . . . . . . . . . . . . . . . . 276
5.3 Processing of Crystalline PCT-based Polymers . 277
5.4 Applications For PCT-based Polymers . . . . . . 277
5.4.1 Injection Molding . . . . . . . . . . . . . . . 277
5.4.2 Extrusion . . . . . . . . . . . . . . . . . . . . 279
6 GLYCOL-modified PCT Copolyester: Preparation and Properties . . . . . . . . 279
7 CHDM-modified PET Copolyester: Preparation and Properties  . . . . . . . . . . 280
8 Dibasic-acid-modified PCT Copolyester: Preparation and Properties  . . .. 282
9 Modification of CHDM-based Polyesters with Other Glycols and Acids . . 283 9.1 CHDM-based Copolyesters with Dimethyl 2,6-naphthalenedicarboxylate……. 284
9.2 Polyesters Prepared with 1,4-Cyclohexanedicarboxylic Acid . . . . . . . . . 285
9.3 CHDM-based Copolyesters with 2,2,4,4-tetramethyl-1,3-cyclobutanediol . . . . . . 287
9.4 CHDM-based Copolyesters with Other Selected Monomers . . .. . . . . . . . . 287
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 288
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

8 Poly(Butylene Terephthalate) . . . . . . . . . . . . . . . . . . . 293
Robert R. Gallucci and Bimal R. Patel

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
2 Polymerization of PBT . . . . . . . . . . . . . . . . . . . . . 294
2.1 Monomers . . . . . . . . . . . . . . . . . . . . . . . . . 296
2.1.1 1,4-Butanediol . . . . . . . . . . . . . . . . . 296
2.1.2 Dimethyl Terephthalate and Terephthalic
Acid . . . . . . . . . . . . . . . . . . . . . . . 297
2.2 Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . 297
2.3 Process Chemistry . . . . . . . . . . . . . . . . . . . 297
2.4 Commercial Processes . . . . . . . . . . . . . . . . . 300
3 Properties of PBT . . . . . . . . . . . . . . . . . . . . . . . . 301
3.1 Unfilled PBT . . . . . . . . . . . . . . . . . . . . . . . 303
3.2 Fiberglass-filled PBT . . . . . . . . . . . . . . . . . . 305
3.3 Mineral-filled PBT . . . . . . . . . . . . . . . . . . . 307
4 PBT Polymer Blends . . . . . . . . . . . . . . . . . . . . . . 307
4.1 PBT–PET Blends . . . . . . . . . . . . . . . . . . . . 308
4.2 PBT–Polycarbonate Blends . . . . . . . . . . . . . 308
4.3 Impact-modified PBT and PBT–PC Blends . . . 310
4.4 PBT Blends with Styrenic Copolymers . . . . . . 311
5 Flame-retardant Additives . . . . . . . . . . . . . . . . . . . 313
6 PBT and Water . . . . . . . . . . . . . . . . . . . . . . . . . . 315
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

9 Properties and Applications of Poly(Ethylene 2,6-naphthalene), its Copolyesters and Blends . . . . . . . 323
Doug D. Callander

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
2 Manufacture of PEN . . . . . . . . . . . . . . . . . . . . . . 324
3 Properties of PEN . . . . . . . . . . . . . . . . . . . . . . . . 325                                                                   4 Thermal Transitions of PEN . . . . . . . . . . . . . . . . . 326
5 Comparison of the Properties of PEN and PET . . . . . 326
6 Optical Properties of PEN . . . . . . . . . . . . . . . . . . . 328
7 Solid-state Polymerization of PEN . . . . . . . . . . . . . 328
8 Copolyesters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
8.1 Benefits of Naphthalate-modified Copolyesters . 329
8.2 Manufacture of Copolyesters . . . . . . . . . . . . 330
9 Naphthalate-based Blends . . . . . . . . . . . . . . . . . . . 330
10 Applications for PEN, its Copolyesters and Blends . . 331
10.1 Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
10.2 Fiber and Monofilament . . . . . . . . . . . . . . . . 332
10.3 Containers . . . . . . . . . . . . . . . . . . . . . . . . . 332
10.4 Cosmetic and Pharmaceutical Containers . . . . . 333
11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

10 Biaxially Oriented Poly(Ethylene 2,6-naphthalene) Films: Manufacture, Properties and Commercial Applications 335
Bin Hu, Raphael M. Ottenbrite and Junaid A. Siddiqui

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
2 The Manufacturing Process for PEN Films . . . . . . . . 337
2.1 Synthesis of Dimethyl-2,6-naphthalene Dicarboxylate . . . . . . . . . . . . . . . . . .337
2.2 Preparation Process of PEN Resin . . . . . . . . . 339
2.2.1 Oligomer and Prepolymer Formation . . 340
2.2.2 High-polymer Formation . . . . . . . . . . 340
2.3 Continuous Process for the Manufacture of Biaxially Oriented PEN Film…………………. 341
3 Properties of PEN . . . . . . . . . . . . . . . . . . . . . . . . 341
3.1 Morphology of PEN . . . . . . . . . . . . . . . . . . 344
3.2 Chemical Stability . . . . . . . . . . . . . . . . . . . 344
3.3 Thermal Properties . . . . . . . . . . . . . . . . . . . 346
3.4 Mechanical Properties . . . . . . . . . . . . . . . . . 346
3.5 Gas-barrier Properties . . . . . . . . . . . . . . . . . 347
3.6 Electrical Properties . . . . . . . . . . . . . . . . . . 348
3.7 Optical Properties . . . . . . . . . . . . . . . . . . . . 349
4 Applications for PEN Films . . . . . . . . . . . . . . . . . . 350
4.1 Motors and Machine Parts . . . . . . . . . . . . . . 352
4.2 Electrical Devices . . . . . . . . . . . . . . . . . . . . 352
4.3 Photographic Films . . . . . . . . . . . . . . . . . . . 353
4.4 Cable and Wires Insulation . . . . . . . . . . . . . . 354
4.5 Tapes and Belts . . . . . . . . . . . . . . . . . . . . . 354                                                                       4.6 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
4.7 Printing and Embossing Films . . . . . . . . . . . . 356
4.8 Packaging Materials . . . . . . . . . . . . . . . . . . 356
4.9 Medical Uses . . . . . . . . . . . . . . . . . . . . . . . 357
4.10 Miscellaneous Industrial Applications . . . . . . . 357
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

11 Synthesis, Properties and Applications of Poly(Trimethylene Terephthalate) . . . . . . . . . . . . . . . 361
Hoe H. Chuah

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
2 Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . 362
2.1 1,3-Propanediol Monomer . . . . . . . . . . . . . . 363
2.2 The Polymerization Stage . . . . . . . . . . . . . . . 363
2.3 Side Reactions and Products . . . . . . . . . . . . . 367
3 Physical Properties . . . . . . . . . . . . . . . . . . . . . . . 368
3.1 Intrinsic Viscosity and Molecular Weights . . . . 369
3.2 Crystal Structure . . . . . . . . . . . . . . . . . . . . 370
3.3 Crystal Density . . . . . . . . . . . . . . . . . . . . . 370
3.4 Thermal Properties . . . . . . . . . . . . . . . . . . . 371
3.4.1 Melting and Crystallization . . . . . . . . . 371
3.5 Crystallization Kinetics . . . . . . . . . . . . . . . . 372
3.6 Non-isothermal Crystallization Kinetics . . . . . 374
3.7 Heat Capacity and Heat of Fusion . . . . . . . . . 374
3.8 Glass Transition and Dynamic Mechanical Properties . . . . . . . . . . . . . . . . .. 374
3.9 Mechanical and Physical Properties . . . . . . . . 376
3.10 Melt Rheology . . . . . . . . . . . . . . . . . . . . . . 377
4 Fiber Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 378
4.1 Tensile Properties . . . . . . . . . . . . . . . . . . . . 378
4.2 Elastic Recovery . . . . . . . . . . . . . . . . . . . . 379
4.3 Large Strain Deformation and Conformational Changes . . . . . . . . . . . . . . . . 381
4.4 Drawing Behavior . . . . . . . . . . . . . . . . . . . 383
4.5 Crystal Orientation . . . . . . . . . . . . . . . . . . . 384
5 Processing and Applications . . . . . . . . . . . . . . . . . 385
5.1 Applications . . . . . . . . . . . . . . . . . . . . . . . 385
5.2 Fiber Processing . . . . . . . . . . . . . . . . . . . . . 386
5.2.1 Partially Oriented and Textured Yarns for
Textile Applications . . . . . . . . . . . . . 386
5.2.2 Carpets . . . . . . . . . . . . . . . . . . . . . . 388                                                                                   5.3 Dyeing . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
5.4 Injection Molding . . . . . . . . . . . . . . . . . . . . 389
6 PTT Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . 390
7 Health and Safety . . . . . . . . . . . . . . . . . . . . . . . . 391
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

IV FIBERS AND COMPOUNDS

12 Polyester Fibers: Fiber Formation and End-use Applications . . . . . . . . 401
Glen Reese

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
2 General Applications . . . . . . . . . . . . . . . . . . . . . . 402
3 Chemical and Physical Structure . . . . . . . . . . . . . . 404
3.1 Melt Behavior . . . . . . . . . . . . . . . . . . . . . . 404
3.2 Polymer Structure . . . . . . . . . . . . . . . . . . . . 406
3.3 Fiber Geometry . . . . . . . . . . . . . . . . . . . . . 410
4 Melt Spinning of PET Fibers . . . . . . . . . . . . . . . . . 410
4.1 Spinning Process Control . . . . . . . . . . . . . . . 416
5 Drawing of Spun Filaments . . . . . . . . . . . . . . . . . . 418
5.1 Commercial Drawing Processes . . . . . . . . . . . 420
6 Specialized Applications . . . . . . . . . . . . . . . . . . . . 422
6.1 Light Reflectance . . . . . . . . . . . . . . . . . . . . 422
6.2 Low Pill Fibers . . . . . . . . . . . . . . . . . . . . . 424
6.3 Deep Dye Fibers . . . . . . . . . . . . . . . . . . . . 424
6.4 Ionic Dyeability . . . . . . . . . . . . . . . . . . . . . 425
6.5 Antistatic/Antisoil Fibers . . . . . . . . . . . . . . . 426
6.6 High-shrink Fibers . . . . . . . . . . . . . . . . . . . 427
6.7 Low-melt Fibers . . . . . . . . . . . . . . . . . . . . . 427
6.8 Bicomponent (Bico) Fibers . . . . . . . . . . . . . . 427
6.9 Hollow Fibers . . . . . . . . . . . . . . . . . . . . . . 429
6.10 Microfibers . . . . . . . . . . . . . . . . . . . . . . . . 429
6.11 Surface Friction and Adhesion . . . . . . . . . . . 430
6.12 Antiflammability and Other Applications . . . . . 430
7 The Future of Polyester Fibers . . . . . . . . . . . . . . . . 431
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

13 Relationship Between Polyester Quality and Processability: Hands-on Experience . . . . . . . . . . . . . 435
Wolfgang G¨oltner

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
2 Polyesters for Filament and Staple Fiber Applications 438                                    2.1 Spinnability . . . . . . . . . . . . . . . . . . . . . . . . 438
2.1.1 Solidification, Structure Formation and Deformability . . . . . . . . . . . . . . . . . 439
2.2 Yarn Break . . . . . . . . . . . . . . . . . . . . . . . . 450
2.2.1 Spinning . . . . . . . . . . . . . . . . . . . . . 452
2.2.2 Drawing . . . . . . . . . . . . . . . . . . . . . 454
2.2.3 Heat Setting . . . . . . . . . . . . . . . . . . . 455
3 Polymer Contamination . . . . . . . . . . . . . . . . . . . . 456
3.1 Oligomeric Contaminants . . . . . . . . . . . . . . . 459
3.2 Technological Aspects . . . . . . . . . . . . . . . . . 465
3.3 Thermal, Thermo-oxidative and Hydrolytic Degradation . . . . . . . . . . . . . . 468
3.4 Insoluble Polyesters . . . . . . . . . . . . . . . . . . 471
3.5 Gas Bubbles and Voids . . . . . . . . . . . . . . . . 471
3.6 Dyeability . . . . . . . . . . . . . . . . . . . . . . . . . 471
4 Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
4.1 Surface Properties . . . . . . . . . . . . . . . . . . . . 474
4.2 Streaks . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
4.3 Processability . . . . . . . . . . . . . . . . . . . . . . . 477
5 Bottles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
5.1 Processing . . . . . . . . . . . . . . . . . . . . . . . . . 480
5.2 The Quality of Polyester Bottle Polymer . . . . . 482
5.2.1 Definitions of Color, Haze and Clarity . 482
5.2.2 Color . . . . . . . . . . . . . . . . . . . . . . . 483
5.2.3 Stability . . . . . . . . . . . . . . . . . . . . . 484
5.2.4 Acetaldehyde . . . . . . . . . . . . . . . . . . 485
5.2.5 Barrier Properties . . . . . . . . . . . . . . . 486
6 Other Polyesters . . . . . . . . . . . . . . . . . . . . . . . . . 487
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

14 Additives for the Modification of Poly(ethylene Terephthalate) To Produce Engineering-grade Polymer . . . . . . . . . . . 495
John Scheirs

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
2 Chain Extenders . . . . . . . . . . . . . . . . . . . . . . . . . 497
2.1 Pyromellitic Dianhydride . . . . . . . . . . . . . . . 499
2.2 Phenylenebisoxazoline . . . . . . . . . . . . . . . . . 502
2.3 Diepoxide Chain Extenders . . . . . . . . . . . . . 503
2.4 Tetraepoxide Chain Extenders . . . . . . . . . . . . 504
2.5 Phosphites Chain Extension Promoters . . . . . . 504
2.6 Carbonyl Bis(1-caprolactam) . . . . . . . . . . . . . 505                                                                3 Solid-stating Accelerators . . . . . . . . . . . . . . . . . . . 505
4 Impact Modifiers (Tougheners) . . . . . . . . . . . . . . . . 506
4.1 Reactive Impact Modifiers . . . . . . . . . . . . . . 507
4.2 Non-reactive Impact Modifiers (Co-modifiers) . 510
4.2.1 Core–Shell Elastomers . . . . . . . . . . . 511
4.3 Theory of Impact Modification of PET . . . . . . 514
5 Nucleating Agents . . . . . . . . . . . . . . . . . . . . . . . . 515
6 Nucleation/Crystallization Promoters . . . . . . . . . . . . 520
7 Anti-hydrolysis Additives . . . . . . . . . . . . . . . . . . . 522
8 Reinforcements . . . . . . . . . . . . . . . . . . . . . . . . . . 524
9 Flame Retardants . . . . . . . . . . . . . . . . . . . . . . . . . 526
10 Polymeric Modifiers for PET . . . . . . . . . . . . . . . . . 528
11 Specialty Additives . . . . . . . . . . . . . . . . . . . . . . . 529
11.1 Melt Strength Enhancers . . . . . . . . . . . . . . . 529
11.2 Carboxyl Acid Scavengers . . . . . . . . . . . . . . 530
11.3 Transesterification Inhibitors . . . . . . . . . . . . . 530
11.4 Gloss Enhancers . . . . . . . . . . . . . . . . . . . . . 530
11.5 Alloying (Coupling) Agents . . . . . . . . . . . . . 531
11.6 Processing Stabilizers . . . . . . . . . . . . . . . . . 531
12 Technology of Commercial PET Engineering Polymers 532
12.1 Rynite . . . . . . . . . . . . . . . . . . . . . . . . . . 532
12.2 Petra . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
12.3 Impet . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
13 Compounding Principles for Preparing Engineering-grade PET Resins . 534
14 Commercial Glass-filled and Toughened PET Grades . 534
15 ‘Supertough’ PET . . . . . . . . . . . . . . . . . . . . . . . . 535
16 Automotive Applications for Modified PET . . . . . . . 536
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

15 Thermoplastic Polyester Composites . . . . . . . . . . . . . . 541
Andrew E. Brink

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
2 Poly(ethylene Terephthalate) . . . . . . . . . . . . . . . . . 542
2.1 Crystallization of Poly(ethylene Terephthalate) . 543
2.2 Advantages of Poly(ethylene Terephthalate) . . . 546
3 Comparison of Thermoplastic Polyesters . . . . . . . . . 546
3.1 Poly(butylene Terephthalate) . . . . . . . . . . . . . 546
3.2 Poly(1,4-cyclohexylenedimethylene Terephthalate) . . . . . . . . . . . . . .. . . . . 547
3.3 Poly(trimethylene Terephthalate) . . . . . . . . . . 547                                                           4 Composite Properties . . . . . . . . . . . . . . . . . . . . . . 549
4.1 Kelly–Tyson Equation . . . . . . . . . . . . . . . . . 549
4.2 Interfacial Shear Strength – The Importance of Sizing . . . . . . . . . . . . . . . . . 554
4.3 Carbon Fiber Reinforcements . . . . . . . . . . . . 556
5 New Composite Applications . . . . . . . . . . . . . . . . . 557
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

V DEPOLYMERIZATION AND DEGRADATION

16 Recycling Polyesters by Chemical Depolymerization  565
David D. Cornell

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
2 Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
4 Technology for Polyester Depolymerization . . . . . . . 572
5 Commercial Application . . . . . . . . . . . . . . . . . . . . 575
6 Criteria for Commercial Success . . . . . . . . . . . . . . 576
7 Evaluation of Technologies . . . . . . . . . . . . . . . . . . 576
7.1 Feedstock . . . . . . . . . . . . . . . . . . . . . . . . . 577
7.2 Capital . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
10 Acknowledgement and disclaimer . . . . . . . . . . . . . . 587
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
17 Controlled Degradation Polyesters . . . . . . . . . . . . . . . 591
F. Glenn Gallagher
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
2 Why Degradable Polymers? . . . . . . . . . . . . . . . . . . 591
3 Polymer Degradation . . . . . . . . . . . . . . . . . . . . . . 593
4 Degradable Polyester Applications . . . . . . . . . . . . . 594
4.1 Medical . . . . . . . . . . . . . . . . . . . . . . . . . . 594
4.2 Aquatic . . . . . . . . . . . . . . . . . . . . . . . . . . 595
4.3 Terrestrial . . . . . . . . . . . . . . . . . . . . . . . . . 595
4.4 Solid Waste . . . . . . . . . . . . . . . . . . . . . . . . 595
4.4.1 Recycling . . . . . . . . . . . . . . . . . . . . 597
4.4.2 Landfills . . . . . . . . . . . . . . . . . . . . . 597
4.4.3 Wastewater Treatment Facilities . . . . . . 598
4.4.4 Composting . . . . . . . . . . . . . . . . . . . 598
4.4.5 Litter . . . . . . . . . . . . . . . . . . . . . . . 599                                                                                       5 Selecting a Polymer for an Application . . . . . . . . . . 600
5.1 Understand Application Requirement for a Specific Location . . . . . . . . . . 600
5.2 Degradation Testing Protocol including Goal Degradation Product . . . . 602
5.3 Lessons from Natural Products . . . . . . . . . . . 602
6 Degradable Polyesters . . . . . . . . . . . . . . . . . . . . . 604
6.1 Aromatic Polyesters . . . . . . . . . . . . . . . . . . 604
6.2 Aliphatic Polyesters . . . . . . . . . . . . . . . . . . 605
6.3 Copolyesters of Terephthalate to Control
Degradation . . . . . . . . . . . . . . . . . . . . . . . . 605
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606

18 Photodegradation of Poly(ethylene Terephthalate) and
Poly(ethylene/1,4-Cyclohexylenedimethylene Terephthalate) . . . . . . . . . . . . . 609
David R. Fagerburg and Horst Clauberg

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
2 Weather-induced Degradation . . . . . . . . . . . . . . . . . 610
2.1 Important Climate Variables . . . . . . . . . . . . . 610
2.2 Artificial Weathering Devices . . . . . . . . . . . . 612
3 Recent Results for Degradation in PECT . . . . . . . . . 613
3.1 Coloration . . . . . . . . . . . . . . . . . . . . . . . . . 613
3.2 Loss of Toughness . . . . . . . . . . . . . . . . . . . 617
3.3 Depth Profile of the Damage . . . . . . . . . . . . 618
4 Degradation Mechanisms in PET and PECT . . . . . . . 626
5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638
References and Notes . . . . . . . . . . . . . . . . . . . . . . 638

VI LIQUID CRYSTAL POLYESTERS

19 High-performance Liquid Crystal Polyesters with
Controlled Molecular Structure . . . . . . . . . . . . . . . . 645
Toshihide Inoue and Toru Yamanaka

1 Introduction – Chemical Structures and Liquid
Crystallinity . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
2.1 Synthesis of Polyarylates . . . . . . . . . . . . . . . 646                                                                 2.2 Preparation of Fibers . . . . . . . . . . . . . . . . . . 646
2.3 Preparation of Specimens . . . . . . . . . . . . . . . 646
3 Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . 646
3.1 Flexural Modulus . . . . . . . . . . . . . . . . . . . . 646
3.2 Dynamic Storage Modulus . . . . . . . . . . . . . . 647
3.3 Anisotropic Melting Temperature and Clearing Point . . . . . . . . . . . . . . .. . . . 647
3.4 Melting Temperature and Glass Transition Temperature . . . . . . . . . . . . . . . 647
3.5 Orientation Function of Nematic Domains . . . . 647
3.6 Relative Degree of Crystallinity . . . . . . . . . . 647
3.7 Morphology . . . . . . . . . . . . . . . . . . . . . . . 648
3.8 Heat Distortion Temperatures . . . . . . . . . . . . 648
4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 648
4.1 Moduli of As-spun Fibers . . . . . . . . . . . . . . 648
4.2 Moduli of Injection Molded Specimens . . . . . . 655
4.3 Heat Resistance . . . . . . . . . . . . . . . . . . . . . 659
4.3.1 Glass Transition Temperature . . . . . . . 659
4.3.2 Heat Distortion Temperature . . . . . . . . 660
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
6 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . 662
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662

20 Thermotropic Liquid Crystal Polymer Reinforced
Polyesters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
Seong H. Kim

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
2 PHB/PEN/PET Mechanical Blends . . . . . . . . . . . . . 666
2.1 The Liquid Crystalline Phase . . . . . . . . . . . . 666
2.2 Thermal behavior . . . . . . . . . . . . . . . . . . . . 669
2.3 Mechanical properties . . . . . . . . . . . . . . . . . 671
2.4 Transesterification . . . . . . . . . . . . . . . . . . . . 673
3 Effect of a catalyst on the compatibility of LCP/PEN
Blends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
3.1 Mechanical property improvement . . . . . . . . . 674
3.2 Dispersion of LCP in PEN . . . . . . . . . . . . . . 678
3.3 Heterogeneity of the blend . . . . . . . . . . . . . . 679
4 Thermodynamic miscibility determination of TLCP and
polyesters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
5 Crystallization kinetics of LCP with polyesters . . . . . 686                                          5.1 Non-isothermal crystallization dynamics . . . . . 687
5.2 Isothermal crystallization dynamics . . . . . . . . 690
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 694
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

VII UNSATURATED POLYESTERS

21 Preparation, Properties and Applications of Unsaturated Polyesters . . . . . . . . . . . . . . . . .. . . . . . . 699
Keith G. Johnson and Lau S. Yang

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
2 Preparation of Unsaturated Polyester Resins . . . . . . . 700
2.1 Three Types of Unsaturated Polyester Resin
Products . . . . . . . . . . . . . . . . . . . . . . . . . . 701
3 Properties of Unsaturated Polyester Resins . . . . . . . . 705
3.1 Chemical Constituents . . . . . . . . . . . . . . . . . 706
3.2 Additives . . . . . . . . . . . . . . . . . . . . . . . . . 706
3.3 Fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
3.4 Reinforcements . . . . . . . . . . . . . . . . . . . . . 707
4 Applications of Unsaturated Polyester Resins . . . . . . 708
4.1 Marine . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
4.2 Construction . . . . . . . . . . . . . . . . . . . . . . . 710
4.3 Transportation . . . . . . . . . . . . . . . . . . . . . . 711
5 Future Developments . . . . . . . . . . . . . . . . . . . . . . 712
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712

22 PEER Polymers: New Unsaturated Polyesters for
Fiber-reinforced Composite Materials . . . . . . . . . . . . 715
Lau S. Yang

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . 717
2.2 General Procedure for the Preparation of Unsaturated Polyester Resin from a Polyether Polyol . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
2.3 A Typical Example of the Preparation of Cured Polyesters . . . . . . . . . . . . . . 717
2.4 Other Examples of Cured Polyester Processes . 717
2.4.1 System 1 . . . . . . . . . . . . . . . . . . . . . 717
2.4.2 System 2 . . . . . . . . . . . . . . . . . . . . . 718                                                                                     3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 718
3.1 Ether Cleavage Reaction Leading to Poly(Ether Ester) Resins . . .. . . . . . . . 718
3.2 Reaction Conditions and Mechanisms . . . . . . . 721
3.3 The Early Product and Strong-acid Catalysis Development . . .  . . . . . . . . . 723
3.4 Liquid properties of PEER Resins . . . . . . . . . 725
3.5 Physical properties of Cured PEER Resins . . . 726
4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 729
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733

 

UNSATURATED POLYESTER RESINS APPLICATIONS

Unsaturated Polyester Resins applications are in the production of Synthetic marble, Sanitary- ware and other FRP products, speciality flooring and decorative elements. They are also used in the transport industry, in the production of sheet moulding compound (SMC) parts as a replacement for metallic parts. The marine industry also uses parts made from glass-reinforced polyester resin.

End-use properties are tailored to the specific market places in which the resins are sold. These properties also, to a large extent, determined by the acid used in the production process. Internationally, propylene glycol maleate resins are usually preferred  for automobile applications. Orthophthalic dicyclopentadiene and isopthalic resins are usually used for the sanitaryware market. While the marine industry typically uses orthophthalic resins, there is now a movement towards isophthalic and vinyl esters in order to make a stronger, more water – and blister – resistant craft. Gel-coat resins are primarily based on isopthalic pclyesters,and neopentyl qlycols are used to provide the maximum protection from chemicals, sunlight, and weathering.

  • Unsaturated polyester resins (U.P.Resins) are main raw materials for manufacturing R.P. Boats and trawlers over 100 feet long .
  • The casting of large parts such as septic tanks , shower trays, bath tubs and sinks and flat sections simulating marble is another growing area.
  • P.resins are used to produce cylindrically shaped items with high burst strengths. Railway tank cars with a capacity of over 22,000 gal. Have been produced. Filament wound Reinforced Plastic gaoline storage tanks are replacing  steel tanks in new gasoline stations primerily due to their outstanding corrosion resistance leading to extended lifetimes.
  • Filament wound pipes for the oil industry and rocket casing for military use are other important end use applications.
  • Rod like materials for fishing poles and golf clubs are manufactured from U.P.resins.
  • Auto head lamp mountings, fender extensions, window frames and hood scoops are also made from P. resins.
  • Unsaturated resins are used in the formulations of sheet moulding compounds (SMC) which are used for  manufacturing exterior automobile parts such as fenders, doors, tailgates and similar exterior car body parts which have a surface appearance resembling a finished sheet metal surface.
  • These resins are used to manufacture
  • Unsaturated polyesters are used in the manufacture of synthetic marble and granite.
  • Electric arc welding torches and masks are made from U.P. resins.
  • Helmets and motorcycle baskets are manufactured from these resins.
  • Unsaturated polyester resins are used as coatings for wood, metal and plastics.
  • Corrosion resistant industrial equipments, piping, ducts, blowers are made from polyesters and chemical resistant lining of fiber reinforced polyester resin is used in chemical plants.
  • Corrosion resistant floorings made of U.P. resins mixed with concrete are used in chemical plants. Polymer concrete is a term that applies to a variety of composites of polymer and concrete or aggregate.
  • Industrial water cooling towers are manufactured from glass fiber reinforced U.P. resins.
  • Household equipments such as mirror-frames, air coolers and washing machine bodies are made of FRP which use U.P. resins in large quantities.
  • General-purpose unsaturated polyester resins are used for composite materials to be used in windmill blades for aero generation as a new application of FRP.
  • Decorative small inner garden made of FRP decorations such as artificial rocks, lanterns and bamboo leaves are attracting lots of attention as interior displays of hotels and restaurants.
  • Chokes (Blasts) used in tube-light fittings are filled with U.P. resin.
  • Unsaturated polyester resins are being used to manufacture bathroom doors as these doors are resistant to hot and cold water and last longer, whereas wooden or mild steel doors are ruined due to water contact.
  • Pressure Vessels for water softeners, water demineralization plants, sand filters, industrial effluent treatment plants etc. are made from Unsaturated Polyester resins. Filament winding is used to make high strength, hollow and (generally) cylindrical composite products such as pipe, storage tanks and pressure vessels.
  • Composite construction panels and electrical insulating materials are made in a continuous lamination process. Chopped multi-end roving, continuous filament mat, reinforcing fabric or chopped strand mat are combined with resin and “sandwiched” between two plastic carrier films. The sheet is pulled through forming rollers and the resin is heated and cured to form flat or contoured composite sheet. Applications include truck trailer linings, clear truck trailer roofs, wall coverings and corrugated roof panels.
  • Corrugated roofing sheets made of FRP are well known.
  • FRP (Fiber Reinforced Unsaturated Polyester Plastic) is employed to manufacture a battery tray.
  • Composite Modular Acoustic Enclosures for DG Sets OTHER UNSATURATED POLYESTER RESINS APPLICATIONS

OTHER UNSATURATED POLYESTER RESINS APPLICATIONS

Composites for Railways

FRP Gear-Case for Railway Locomotives

Jute-Coir Composite Boards for Coach Interiors

FRP Pultruded Profiles

Jute-Glass Composites for Coaches

FRP Sleepers for Railway Girder Bridges

FRP Modular Toilet Unit for Railway Coaches

Composite Main Doors for EMU & Passenger Coaches

Radiator Cooling FRP Fan for Diesel Locomotives

Composites for Automobiles

FRP Compressed Natural Gas (CNG) Cylinders

Jute-Coir Composite Boards for Bus Interiors

Metal Matrix Composite Components (cylinder-block, brake-drum…)

Composites for Bio-Medical Applications

Carbon Fibre External Ring Fixators for Orthopaedics

Composite Artificial Limbs for Physically Handicapped

Composites for Industrial Applications

Energy Efficient Axial Flow FRP Fans for various applications

Vacuum Forming Press for Composites

FRP Armoured Optical Fibre Cable

FRP Pultruded Profiles

Double-Walled FRP Vessels for Chemical Storage

Composites for Building & Construction

Jute-Coir Composites Boards for wardrobes, furniture, paneling, doors

FRP Doors & Windows

Energy Efficient Axial Flow FRP Fans

FRP Pultruded Profiles

Carbon Fibre Composites for Orthopedics

FRP Sleepers for Railway Girder Bridges

Modular FRP Toilets for Railway Coaches

Compressed GRP Grids/Gratings

FRP Main & Sliding Doors for Passenger & EMU Coaches

Interiors for Drivers’ Cabin in Diesel Locomotive for Railways

Interiors for Passenger Coaches in Railways

 

 

BOOKS

What are Unsaturated Polyester Resins

Unsaturated polyester resins are used primarily as the resin component in  glass reinforced thermoset plastics. Their  handleability is good combined with excellent mechanical and electrical properties and resistance to heat and weather. Unsaturated polyester resins are widely used as casting materials, coating materials, putty, adhesives, various types of linings, FRP etc.

Unsaturated Polyester Resins are condensation polymers. These are reaction products of aliphatic diols with unsaturated and saturated diacids. Glycols are such as propylene glycol, mono ethylene glycol, diethylene Glycol. Acids are dibasic acid such as fumaric acid or maleic acid, and an isomer of phthalic acid (saturated). During the condensation process, water is eliminated and the acids are esterified to evolve the polymer. They are brittle at room temperature. Therefore after polyesterification they are dissolved in an unsaturated crosslinkable monomer like styrene, methyl styrene and alkyl methacrylate . These monomers reduce viscosity  and cross-link with the double bonds in the polyester. These resins are crosslinked by peroxide or photochemically initiated radical polymerization.

The reactivity of the resins is determined by the level of unsaturation. Their chemical resistance is determined by the nature of the glycols. They are the most important crosslinkable polymeric materials. The properties and performance of these resins can be modified greatly by selecting chemical constituents of unsaturated polyester resin preparations. Various performance attributes can also be created through the use of additives, fillers and reinforcements.

Commercially used Unsaturated Polyester Resins are:

  • Orthophthalic polyester resins,
  • Isophthalic polyester resins,
  • Vinyl esters,
  • Neopentyl glycol resins
  • Bisphenol-A Resins

Unsaturated Poplyester Resins can be formulated to have a wide range of properties ranging from those of a high molecular weight plasticiser for paints, to those of a hard, brittle solid. They are most often used in conjunction with glass reinforcement. This combination commonly known as GRP (glass reinforced plastics) or FRP (fiber reinforced plastics). Such composites have a toughness perhaps 100 times that of the virgin resins. This, coupled with excellent corrosion corrosion (water, acids) resistance makes GRP attractive for a wide range of applications in building, chemical plants, railway transportation and aerospace.

 

BOOKS

USES

SULFAMIC ACID OR SULPHAMIC ACID

SULFAMIC ACID

SULPHAMIC ACID

Chemical Formula:                         HSO3NH2

CAS Number:                                    5329-14-6

Molecular Weight:                            97.10

Equivalent Weight:                           97.10

Density at 25 oC:                              2.126 g/cm3

Specific heat:                                    1.1467 J/g

Melting point:                                   205 oC

Decomposition Temperature:        209◦C

Vapor pressure:

20 oC                                                  0.8 Pa

100 oC                                               0.25 Pa

Sulfamic acid has a unique and important combination of properties. Itis a white or colorless, odorless, crystalline (sand like), nonhygroscopic, dry, strong inorganic acid. At room temperature it is non-volatile. Therefore it is conveniently handled and packaged in solid form in bags and is easily transported commercially. It is highly stable and can be stored for years without change in properties. Sulfamic Acid is monoamide of sulphuric acid.

Alternatively it is also known as amidosulfonic acid, amidosulfuric acid (IUPAC recommended), aminosulfonic acid, sulphamic acid.

Pure Sulfamic Acid melts at 205 oC and starts decomposing at 209 oC. On decomposition Sulfur trioxide, sulfur dioxide, water, ammonia, and nitrogen are evolved.

Aqueous Sulfamic Acid solutions are practically stable at room temperature but hydrolyze exothermically to ammonium hydrogen sulfate at high temeratures :

NH2SO3H+H2O →NH4HSO4

Rate of  hydrolysis increases with the increase of concentration and temperature and at lower pH.

Sulfamic Acid reacts with metals, alkali and alkaline earth metals and their oxides, hydroxides and carbonates and forms metal sulfamates. These metal sulfamates are, with but few exceptions, soluble in water. The sulfamates of lead, magnesium, and sodium are more soluble in water than the corresponding sulfates, nitrates, chlorides, and acetates. Therefore it is used in cleaning and descaling operations. Its corrosiveness towards metals can be controlled by adding corrosion inhibitors. Metal sulfamate solutions are stable at high temperatures and can be evaporated to dryness on a steam bath without hydrolysis of the amide group. Acidic metal oxides react with sulfamic acid less readily or not at all.

Nitrites react rapidly with sulfamic acid, liberating nitrogen and forming sulfuric acid. This reaction is utilized for the analytical determination of nitrites or of sulfamic acid even in the presence of nitrates.

Sulfamic Acid reacts with primary alcohols, glycols and glycerine upon heating and form corresponding esters.

It is highly ionized in aqueous solution, and its pH range approaches that of nitric, sulfuric, and hydrochloric acids.

At low temperatures chlorine, bromine, and chlorates oxidize sulfamic acid to sulfuric acid. Potassium permanganate, chromic acid, and ferric chloride do not oxidize sulfamic acid.

Sulfamic acid reacts with concentrated nitric acid to form nitrous oxide:

NH2SO2OH + HNO3 → H2SO4+ H2O+N2O

This reaction is used as a convenient method for preparing pure nitrous oxide.

Sulfamic Acid is fairly soluble in water and nitrogenous solvents such as liquid ammonia formamide, slightly soluble in methanol, and insoluble in ethanol, acetone, and ether. It is insoluble in organic oxygen-containing and most nonpolar organic solvents, hydrocarbons, chlorinated hydrocarbons, carbon disulfide, toluene and sulfur dioxide. The solubility in water is decreased markedly by sulfuric acid and sodium sulfate. It is practically insoluble in 70-100% sulfuric acid. Its solubility in Fuming Sulfuric Acid     (21% SO3) is 2.38 gram in 100 grams of acid.

 

Solubility of Sulfamic Acid in water:

Temperature oC Solubility per 100 gram water Temperature oC Solubility per 100 gram water
0 14.68 grams 50 32.82 grams
10 18.56 grams 60 37.10 grams
20 21.32 grams 70 41.91 grams
30 26.09 grams 80 47.08 grams
40 29.49 grams

Solubility of Sulfamic Acid in Organic solvents at 25 oC per 100 grams of solvent:

Methanol                        4.3 gram

Ethanol                          1.7 gram

Acetone                          0.4 gram

Ether                              0.009 gram

Formamide                    20.0 gram

 

pH of Sulfamic Acid solutions in water at 25 oC are :

5%                        0.63

2.5%                     0.86

1%                        1.18

0.5%                     1.41

Upon brief contact with the skin sulfamic acid shows no noticeable effect but, as a normal safety precaution, it is recommended that prolonged exposures be avoided. Similarly, in two hundred human test cases, fabric treated with ammonium sulfamate produced no skin irritation.

In 1936 a practical process, which became the basis for commercial preparation was developed. In this production process, urea is first dissolved in excess cold sulfuric acid. Oleum of suitable sulfur trioxide strength is then added, and the reaction is allowed to proceed under controlled conditions. During the reaction carbon dioxide is evolved, and the sulfamic acid formed precipitates from the solution. The product is isolated by filtration and purified by recrystallization from water. This process involving urea with sulphur trioxide and sulphuric acid continues to be the main method for production of sulphamic acid today.